published In
Proceedings of Int. Symposlum on Multlple Valued Loglc,
Portland, USA, 2000, pp. 460-466.

Probabilistic Verification of Multiple-Valued Functions

Elena Dubrova Harald Sack
Department of Electronics FB IV - Informatik
Royal Institute of Technology = Universitat Trier

S-164 40 Kista D-54286 Trier
Sweden Germany
elena@ele.kth.se sack@uni-trier.de
June 6, 2000
Abstract

This paper describes a probabilistic method for verifying the equivalence of two multiple-
valued functions. Each function is hashed to an integer code by transforming it to a integer-
valued polynomial and the equivalence of two polynomials is checked probabilistically. The
hash codes for two equivalent functions are always the same. Thus, the equivalence of two
functions can be verified with a known probability of error, arising from collisions between
inequivalent functions. Such a probabilistic verification can be an attractive alternative for
verifying functions that are too large to be handled by deterministic verification methods.

1 Introduction

In recent years, advances in integrated circuit technology made feasible fabrication of several
commercial products benefiting from multiple-valued logic, such as 256-Mbit 4-valued flash
memory [1] and 4-Gbit 4-valued DRAM [2]. These products can be seen as first steps toward
recognition of the increasing role of multiple-valued logic in the next generation of electronic
systems. However, for further practical utilization, efficient computer-aided tools for design,
testing and verification of multiple-valued logic circuits are needed. Some existing tools, such
as Berkeley’s tool for verification and synthesis VIS [3], provide a solution for the special case
of multiple-valued input binary-valued output functions, but the general problem is still open.

This paper focuses on the problem of verification of multiple-valued functions. Up to now,
very little research is done in this area. Some techniques for verification of Boolean circuits, such
as random simulation or symbolic simulation, can be directly applied to verification of multiple-
valued logic case [4], [5]. Similarly, verification procedures employing Reduced Ordered Binary
Decision Diagrams (ROBDDs) [6] can adapted to Multiple-valued Decision Diagrams (MDD)
[7]. However, the MDD verification methods representing functions as single, monolithic graph
might be infeasible for large functions. We believe that deterministic methods of verification
will not be practical for the multiple-valued logic domain due to the increasing complexity of
the problem.



In this paper we present a probabilistic method for design verification of multiple-valued
logic functions, which generalizes the method introduced in [8]. We define a functional transfor-

mation A which converts a multiple-valued function f : M™ — M on a set M 4 {0,1,...,m — 1}
into a polynomial of type Ap[f]: Z) — Z, over a finite field of integers Z, modulo p, for some
prime p. This polynomial is used to generate a hash code for f, by evaluating the value of
Aplfl(z1,...,z,) for randomly chosen values of z; from Z,, i € {1,...,n}. The hash codes
for two equivalent functions are always the same. Thus, the equivalence of two functions
can be verified with a known probability of error, arising form collisions between inequivalent
functions.

The paper is organized as follows. In Section 1, the A-transform is defined and its properties
are studied. Section 2 shows how to compute the integer-valued polynomial given by A-
transform. Section 3 defines the notion of hash code for a function. In Section 4, we give a
conclusion and describe the topics for further research.

2 Definition and properties of the A-transform

To define the transformation A, we associate a key polynomial with each of the m™ input
assignments of a multiple-valued function f(z1,...,z,). We then sum all the key polynomials
of assignments producing the non-zero output value of f, and interpret the result as a integer-
valued function A,,[f](z1,...,zy) over Z,.

The key polynomial for a given row of the truth table is a product of terms, where each
term is associated with a particular input variable z;, i € {1,...,n}. If b; represents the
value of z; in a given row of the truth table, then the corresponding term w(b;, z;) in the key
polynomial is defined as follows:

Definition 1 For any m > 1, w: Z, x Z, — Z, is defined by

It is easy to see that H b — 1 for b = i and H b — 0 for b # 1. Therefore,

J—i J—i
jeM—{i} jeM—{i}
parameter b acts as a selector between the terms H % for different values of i € M,
jeM—{i}
ie. w(0,z) = H 7];.:”, w(l,z) = H ;.%:f, and so on. On the other hand, each of the
jeM—{0} jeM—{1}
terms H %, represents a polynomial which evaluates to 1 for £ = 4 and evaluates to 0

jeM—{i}
for x € M — {i}. So, such a polynomial has a behavior similar to the behavior of the literal
operator z:
i) m— 1 ifx=1
10 otherwise

except that for z =1 the literal z evaluates to m — 1, and not to 1.



The key polynomial Wy, for an assignment (by,...,b,) € M™ of n variables is defined as the
product of the w(b;, x;) terms, i € {1,...,n}:

Definition 2 For any n > 0 and m > 1, the key polynomial W, : Zg” — Zp 1s defined by

n

Wo(by, ... bpyx1, ... xy) = Hw(bz-,xi)
=1

For example, for m = 3, W(0,1,21,22) = $(1 — 21)(2 — z1)z2(2 — 22). Similarly,
WQ(l, 2, xl,xg) = x1(2 - 1‘1)(—%1‘2)(1 - ZEQ).

Now, we define the transformation A as a sum of key polynomials W, for all assignments
(b1,...,by) € M"™, each multiplied by the value of f for the corresponding assignment. We
give a definition, applicable for general functions Z; — Z, over the field Z,. Note that,
since M C Z,, the multiple-valued functions M" — M are a subset of the field functions
Zy — Zp. While a field function is defined for inputs z; ¢ M as well, the values which the
function produces for such assignments do not participate in the definition. To distinguish
between multiple-valued and field functions, throughout the paper we use the unsubscribed
letters f, g for multiple-valued functions of type M™ — M and the subscribed letters f,, g, for
field functions of type Z; — Z,.

Definition 3 Given a function of type f, : Z)) — Z, and m > 1, the polynomial Ay[f.] :
Zy — Zyp 1s defined by

Anlfl(z1, ... zn) = > folbiy .o by) - Wi(bi, ... by, @1y, 2p)

V(bl,...,bn)EMn
For example, for m = 3 and n = 2, the polynomial As[f,](x1,x2) is given by

A3[f](21,22) 1 —21)(2 —21)(1 — 22)(2 — 22) +
1—:171) 2 —171)172(2 —$2) +
1 —1)(2 — z1)(—22)(1 — 72) +

(
(
(
(2 — :El)(]_ - 172)(2 - 1172) +
)
)

SR [T,

(2 —z1)22(2 — 22) +

(2 —z1)(=z2)(1 —22) +
—11,‘1)(1 — :El)(l — 11,‘2)(2 — iIIQ) +
—:El)(]_ - 171)172(2 - $2) +
—21)(1 = z1)(—z2) (1 — 22).

E.g. for the 3-valued function f(x1,x9) = MIN(z1,xz2), the corresponding polynomial is

As[fl(z1, 72)

N N N e e N S e
o~ R e e~ o~

W=D —=o] — 83

NN RO OO
N = ON = O N = O

NN N N AN N N S

+
+
+
+
+
+
+
+

I S

:E1(2 — 171):172(2 — 172) + 171(2 — 171)(—172)(1 — 1172) +
(—=z1)(1 —21)22(2 — 22) + 2(=21)(1 — 21)(—22)(1 — z2)

5 2 2 1,.2,.2
5T1%Ty — T1XT] — T1T2 + 5T{T5.

-+

Note that the A-transform is defined only for assignments (by,...,b,) € M™. Therefore,
if two field functions f, and g, have the same values for all (by,...,b,) € M", then they are
treated identically by the A-transform. We say that two such functions are m-equivalent:



Definition 4 The functions f, and g, of type Zy — Z, are m-equivalent if and only if
fo(b1,. . bp) = gy(b1,...,b,) for any assignment (by,...,b,) € M™.

We write f, 2 g, to denote that f, and g, are m-equivalent. If both f and ¢ are multiple-valued
functions of type M™ — M then f 2 ¢ is the same as f = g.
By Definition 3, f, £ ¢, implies A,,[f.] = A,[f.]. However, can we conclude A,,[f.] # An[f-]
m

from f, # ¢.7 To answer this question let us examine the behavior of polynomial A,,[f]
when it is evaluated for some assignment (by,...,b,) € M™. Tt is easy to see that for
any b,b' € M, wb,b) = 1 if b = ¥, and w(b,b') = 0 otherwise. Therefore, for any
(b, by), (B, BL) € M™, Wi(by,... bp,b,,... b)) = 1if b; = bl for all i € {1,...,n},
and W(by,..., by, b},...,b,) = 0 otherwise. Using these facts, we can prove the following
theorem:

Theorem 1 For any function f, : Z} — Z, Aplf.] Zf,.
Proof: By Definition 3, for any (b),...,b),) € M™ we have:

Aplfo](b],...,b)) = > fo(biy.o b)) - Wy (bry. .. by, b, ... D)),
V(bl,...,bn)EM”‘

Since W(by,...,bp,b1,...,bl) = 1 only if b; = b, for all i € {1,...,n}, and 0 otherwise, this
gives us A, [f.](b),...,0,) = f(b),...,b),)- 1. Since it holds for any (b],...,b)) € M", we get
Amlf:] = fo.

|

It follows from the theorem that, though applying the A-transform to a multiple-valued
function f increases the domain of f from M™ to Z}, the polynomial A, [f] still yields the same
values as f when evaluated for an assignment (by,...,b,) € M™. Therefore, the polynomials
for two different multiple-valued functions f and g differ on all assignments (by,...,b,) € M™
for which f(b1,...,bs) # g(b1,...,b,). Consequently, f # g implies A,,[f] # Amlg].

3 Computing the A-transform

Computing A-transforms using Definition 3 is feasible for very small functions. For larger
functions, we develop an alternative method, which is described in this section.
Let fy,=; denotes a subfunction of the function f(z1,...,z,) with the variable z; being

. df )
fixed to the value j, i.e. fr,—j = f(®1,...,Ti—1,7, Tit1,-- -, %n)-

We can apply to a polynomial A,,[f] the following decomposition, which can be considered
as a generalization of Shannon decomposition of Boolean functions:

Theorem 2 Every polynomial Ay, [f], m > 1, can be decomposed with respect to a variable x;
of f,i€{l,...,n}, in the following way

Am[f] = mz_ ( H k];_ l'z) 'Am[fxiZj]

j=0 \VkeM—{j} =




Proof: In order to simplify the exposition and without loss of generality, we show the proof
for the case of z; = z1:

Anlf] = S flbryeby) Wby, by, T, ) {Dfn. 3}
V(b1 )EM™
m—1
= Z f(, b0y by) - Wi(d,boy .o by @1y e v ) {re-grouping}
j:

0 V(ba,....bn)eM—1
m—1

= Z > f(j,b2,...,bn)-( II kk—";l)-Wn_l(bQ,...,bn,xQ,...,xn)

J=0 V(ba,...,bn)eMn—1 VkeM—{j}
(wiG,z)= ][ ’Ck—_fgl, Dfn. 2}
Vke M—{j}
m—1
— ( H kk—_x]l> - A fr =] {Dfn. 3}
j=0 \VkeM—{j}
O

Next, we prove a lemma showing how that term H ]z%;"., j € M, can be expressed by
vkeM—{j}
an m-equivalent polynomial in linear form.

Lemma 1 For any variable x from Z,, any fized j € M, and m > 2:

m—1 )
> ajrt ifj=0
H k=7 m i=0 ‘
ey F—d ) it a2 i G € M {0} and j #£m -
ajjz’ ifj€M—{0} and j =m —j

where Vi,j € M, a;; = %, with D and D;; given by

m—1 m—1
D= [[#- []im
=1 =1

4

m—1 m—1
H Lk®Omi _ H L(m—k)®mi ifj=0
k=1 k=1
m—1
- I+ ifj#0and j =i and j #m —i (1)
k=1
Dij = L L . S
—W-Hkm if7#0and j=m—1iand j #1
m—1 k=1 m—1
L. (Hk’f— Hkm—’f) ifj#0and j=iandj=m—i
k=1 k=1
[ 0 otherwise

where ” @y, 7 denotes addition modulo m and all other operations are regular arithmetic oper-
ations in Zyp.



Proof: We compute the coefficients a;;, 4,7 € M, by solving the following system of m linear
equations with m unknown elements:

ao; -00+a1j 0! + az; -02+...+a(m_1)j .om—l1 bo
ap;j - 10 +ay; - 1! + ag; - 12 + ...+ A(m—1)j ° 1m-1 by
aoj-20+a1j-21+a2j-22+...+a(m_1)j-2m’1: by

agj - (m =10 +ay; - (m—1)"+ag - (m—1)>+... + A(m—1)j - (M — D™t = by,

where Vi € M, b; = H ]k“—:; Such a system can be described by matrices as X -a = b,
vkeM—{j}
where
0° 0t 02 e om-t
10 11 12 1m—1
X = 20 21 22 2m71
(m-1)° (m-1" (m-1)? (m— 1™t
ap; bo
ai; by
a= az;j , b= bo
A(m—1)j bm—1

From linear algebra we know that such a system always has a solution, and this solution is
unique [9]. We compute the ith element of a by applying Kramer’s rule, which says that, for

any 1 € M, a;; is given by the formula a;; = %j, where D is the determinant of X, and Dy;
is the determinant computed after the replacement of the ith column of X by vector b.
Observe, that matrix X has a very regular structure, namely for all 7,5 € M, z;; = il
Therefore, by applying standard rules for computing determinants [9], it is easy to show that
D and Dj; are given by the equation (1).
Examining the structure of D;;, we can derive the following properties of the elements of
Qg

% Vi,7: such that j=0or¢=jorti=m—j
aij; = (2)

0 otherwise

So, the only elements a;; which can possibly have non-zero values are a;o for all i« € M, and
ajj and a;(,_j for all j € M — {0}. Therefore, the expression for the term H i%“" can

vk a7
be simplified to: eM—{j}
m-1
b . gaioxl if j =0
Vke]\l;[{j} E—j ) @i +ajmpyz™ if je M —{0} and j #m —j
aj;x’ ifjeM—{0}and j=m—j



d

As we mentioned above, H % has a behavior similar to the behavior of the literal
vkeM—{j}

operator :]E, except that for z = j the literal % evaluates to m — 1, and not to 1. Therefore,

7o (m—1)- H %, and thus, from Lemma 1, we can conclude that

vke M —{j5}
m—1 ]
1) 3 agiat ifj =0
=0 .
(m —1) - (aj;27 + ajm-jz™’) ifj€ M —{0} and j #m —j
(m—1)-ajjz’ ifjeM—{0} and j =m —j

],
IE

We use Theorem 2 and Lemma 1 to derive another type of decomposition of A,,[f], which
will be used later to derive a canonical expansion for A,,[f]. Before giving the decomposition,
we first summarize some properties of A4,,[f], obvious from Definition 3.

Lemma 2 For any field functions f, and g, and any constant c € Z,,
(a) Am[c- f2] = c- An[f.].
(b) Am[fz + gz] = Am[fz] + Am[gz]-

Theorem 3 Every polynomial Ap,[f], m > 1, can be decomposed with respect to a variable x
of [ in the following way:
case 1: if m is odd, then

m—

Anf] = aooAm[fo=o] + Z ( ajoAm[fr=0] + ajj Am[fr=j] + @j(mn—j) Am|fr=m—j]) '$j)

case 2: if m is even, then

Aplf] = apoAm[fe=0] + Z ((ajOAm[f:v:O] + ajjAm[f:v=j] + aj(mfj)Am[fx:m—j]) -zl 4
LA
+ (amoAnlfozo] + azmm Ap[fommp)) - 2/2)

where Vi, j € M, a;j = ” , and D and D;; given by (1).

Proof:
m—1
Anlf] = ( H kk—_mf) A fri=k] {Theorem 2}
J=0 \VkeM—{j}
m—1 m—1
= aiox’ - Ap[fo=0] + D (087 + ajim—jx™ ) - A fozy] {Lemma 1}
i—0 j=1
m—1
= aUOAm[f:EZO] + Z (ajUAm[f:EZO] +a]] [ffl? ]] +a (m—j) [fx m— J])
j=1

{reordering}



d

Let F' be the vector of coefficients of the truth table of the function f and A™ be a trans-
formation matrix, defined as follows:

Definition 5 The m™ x m™ matriz A" is defined defined inductively by:

" apo 0 0 - 0 0 1
aio all 0 e 0 al(m_l)
1Al ﬁ a9 0 as9 c. a2(m—2) 0
A(m—2)0 0 Am-2)2 - O(m-2)(m—2) 0
L G(m-1)0 G(m-1)1 0 e 0 A(m—1)(m—1)

where Vi,7 € M, the coefficients a;; are given by (2).
2.4 L g1 g gn-
where ” ® 7 denotes the Kronecker product of two matrices.

Clearly, if Theorem 3 is successively applied to the polynomials A,,[f;,—x] of subfunctions
fz,—k about all the remaining variables, we will finally get an expression in which A,,[f] is
expanded in all the variables of f:

Theorem 4 Every polynomial Ay, [f], m > 2, of an n-variable m-valued function f can be
expressed in the following canonical form

m"™—1

Zz in
g cj - R

where (i1iy . ..1,) is the m-ary expansion of i, with iy being the least significant digit, and the

coefficients c¢; are given by the vector C 4 [cocy ... emn—1] computed as C = A™ - F

Proof: By induction on n. We show the proof only for the case of m being odd. For m - even
the proof is similar.

1) Let n = 1. According to Theorem 3, any polynomial A,,[f] of a function f(z) of one variable
x can be decomposed with respect to x as:

Am[f]:a()o fa: 0 Z a;o * f:v 0]+a]] [fx ]]+a (m—j3) [fx =m— ]])

where fy—p = f(k). By Lemma 2, A,,[c] = ¢ for any constant ¢ € Z,. So, we can express the
above as:

m—1
Ap[f] = ag0 - £(0) + Y (ajo - f(0) +aj; - F(§) + ajim_j) - f(m —j)) - 27
J=1

8



which can be re-written as
m—1 )
=Y oo
i=0

where cg = aqgo - f(0) and ¢; = ajo - f(0) +aj; - f(4) + ajom—y) - f(m —j), for all j € M — {0}.
Examining the structure of the matrix A', we can conclude that C = A' - F

2) Hypothesis: Assume the result for n. According to Theorem 3, any A,,[f] of a function f
of n 4 1 variables can be decomposed with respect to x,41 in the following way:

m—1

mlf] = aUOAm[farn+1:0] + Z (ajoAm[fa=o] + ajjAm[fo=j] + aj(m—j)Am[fz:mfj]) ) $£z+1

=1

By the induction hypothesis, we can express each A,, of the subfunctions of n variables in the
canonical form. We use the notation c¥ to denote the ith coefficient of the canonical form of the
subfunction f;, . ,— and Fj for the truth table vector of Jzni1=k- To simplify the exposition

we also use the abbreviation X to stand for the term xl -z - ... zin. So, we replace each of
m—1
m|fenii=k)> B € M, by Zcf - X, with c¥ given by Cj, = A" - F},. Then we get:
i=0
m"—1 m"—1 -1 m"—1
mlf] = aoo- Zc X—l—Z( Zc? X +aj;- ZCJ X + ajim—j) - Zc:n]X> T,
=0 =0
Since ” -7 is distributive over ” + 7, we can re-order the above as
m"—1 m"—1 ) ) )
fl= ( > GOO'C?'X> Tni1 Z ( Y (ajo- ¢ +ajj-c +ajm pei") X) “ Ty
=0 j=1 =0
which can be re-written as
m"—1 ) ) )
=5 cj-alt-a-...-azp
=0
where ¢; = aqg - c?, for 0 < i < m—1, and ¢; = ajp - c? + ajj - C‘Z + aj(m,j)czn_j, for

j-m<i<j-m+m-—1,forallj € M—{0}. Since the coefficients CZ are given by C; = A™-Fj,
this is equivalent to C = (A' ® A") - F = A"t F

For example, for m = 3 and n = 2, the matrix A? is constructed as follows:

1 0 0
Al = | =3/2 2 —1)2
1/2 -1 1/2



and

! 0 0 0 0 0 0 0 0

—3/2 2 —1/2 0 0 0 0 0 0

/2 -1 1/2 0 0 0 0 0 0

~3/2 0 0 2 0 0 —1/2 0 0

A? = 9/4 -3 3/4 -3 4 -1 3/4 -1 1/4
—-3/4  3/2 -3/4 1 -2 1 —1/4  1/2 —1/4

1/2 0 0 -1 0 0 1/2 0 0

—3/4 1 —1/4 3/2 -2 1/2 -3/4 1 —1/4

1/4 —1/2  1/4 —-1/2 1 —1/2 1/4 —1/2 1/4 ]

So, we can compute A3[f] for f = MIN(z1,22), as C = A% - F =

1 0 0 0 0 0 0 0 0] TJ0] [0 W
—3/2 2 —1/2 0 0 0 0 0 0 0 0
/2 -1 1/2 0 0 0 0 0 0 0 0
—3/2 0 0 2 0 0 —1/2 0 0 0 0
9/4 -3 3/4 -3 4 -1 3/4 -1 1/4 1| = | 5/2
—3/4  3/2 —3/4 1 -2 1 —1/4 1/2 —1/4 1 ~1
1/2 0 0 -1 0 0 1/2 0 0 0 0
—3/4 1 —1/4 3/2 -2 1/2 —3/4 1 —1/4 1 ~1
1/4 —1/2  1/4 —1/2 1 —1/2 1/4 —1/2 1/4| | 2] _1/2J

Thus, A3[f](z1,22) = 3129 — 3177 — ziT) + S2703.

4 Computing hash code of the function

We compute the hash code of the function f by assigning randomly chosen integer values
from Z, to the input variables of f, and then evaluating A,,[f] for this values. The resulting
number is the integer hash code of f. This code requires less space than the canonical MDD
representation of the same function and distinguishes any pair of multiple-valued functions with
a quantifiable probability of success. The hash codes for two equivalent functions are always
the same. Thus, the equivalence of two functions can be verified with a known probability of
error, which arises form collisions between inequivalent functions.

For example, consider the 3-valued 3-variable function f = MIN(z,z2) and let the vari-
ables be assigned the random values 1 = 2, z2 = 4. Since A3[f] = %$1$2—$1$%_$%$2+%$%$%,
the hash code for f is 4.

As another example, consider the function g = MAX(MIN(2,:%1,:%2),MIN(1,:%1,:%:2)).
Since Asl[g] = —2z1 + 2x129 — %mx% + 222 — 20230 + %x%x%, if we assign 1 = 2 and 2o = 4
we obtain the same hash code 4 as for MIN function and therefore get collision between two
inequivalent functions.

However, we can considerably decrease the probability of collision by making multiple runs.
On each run, an independent set of input variable assignment is randomly chosen, and the two
function values are computed. If the values differ, we are assured that the two functions ate

not the same. If they are equal, we choose a new set of input assignments and re-evaluate.

10



The probability of erroneously deciding that the functions are equal decrease exponentially
with the number of runs: after k runs, the error probability is e*. For example, if we make a
second run for the functions specified above, with the random values 1 = 3 and x5 = 1, then
the hash code for MIN function is 0 and hash code for g function is 3. So, we can conclude

that f # g.

5 Conclusion

This paper lays a theoretical foundation of a probabilistic method for verification of multiple-
valued functions. We define a functional transformation, which is can be used to obtain
an integer code from a multiple-valued function. The integer codes allow us to determine
probabilistically whether two functions are equivalent.

Further research remains designing an efficient procedure for computing integer hash codes.
A simple way to compute a hash code would be to build an MDD or similar structure from the
input function and then apply a procedure for reducing this structure to an appropriate integer.
Of course, the efficiency of such a scheme would be limited by the need to create and evaluate
an MDD representation of the entire function. A better approach, which we are currently
pursuing, is first to symbolically decompose the function, and then hash it incrementally. This
can be done by first hashing some of its parts, and then using these more compact intermediate
forms to complete the hashing of the entire function.

Another open problem is estimating a bound on the probability that two inequivalent
multiple-valued functions map to the same integer code. In Boolean case, a lower bound on
the probability that a random n-variable vector from Z, distinguishes a given pair of Boolean

n
functions is shown to be (’%1) [8], but generalizing this result to m-valued case is a non-trivial
problem.

References

[1] A. Nozoe et al., A 256-Mb multilevel flash memory with 2 MB/s program rate for mass
storage applications, Proc. of 1999 IEEE Int. Solid-State Circuits Conference (ISSCC’99),
(1999), 110-111.

[2] T. Okuda, T. Murotani, A four-level storage 4-Gb DRAM IEEE Journal of Solid-State
Circuits 32, 11, (1997), 1743 - 1747.

[3] The VIS Group, VIS: A system for verification and synthesis, Proc. 8th Int. Conf. on
Computer Aided Verification, Springer Lecture Notes in Computer Science, 1102, Edited
by R. Alur and T. Henzinger, New Brunswick, NJ, (1996), 428-432.

[4] R. Drechsler, M. Keim, B. Becker, Fault simulation for sequential multi-valued logic net-
works, Proc. 27th Int. Symp. on Multiple- Valued Logic (1997), 145-150.

[5] R. E. Bryant, C.-J. H. Seger, Digital circuit verification using partially-ordered state
models, Proc. 24th Int. Symp. on Multiple- Valued Logic (1994), 2-7.

11



[6] R.E. Bryant, Graph-based algorithm for Boolean function manipulation, IEEE Transac-
tions on Computers C-35 No. 8 (1986), 677-691.

[7] D. M. Miller, Multiple-valued logic design tools, Proc. 23rd Int. Symp. on Multiple- Valued
Logic (1993), 2-11.

[8] J. Jain, J. Bitner, D. S. Fussell, J. A. Abraham, Probabilistic verification of Boolean
functions, Formal Methods in System Design, Kluwer Academic Publishers, 1, (1992),
63-117.

9] G. Birkhoff, S. MacLane, Brief Survey of Modern Algebra, 4th ed., New York, Macmillan,
1977.

12



